

required for the formation of CO bridges. It is not obvious why I and III do not tend toward a structure of type b.

The internal crowding in I and III is evidently not much dependent on whether the R groups in RC=CR are C_2H_5 or H. Thus, it is contacts between atoms all of which are bound directly to the metal atoms that seem to be crucial.

It is important to mention that this is not the first time a purely steric explanation for an SBCO has been proposed, since Vahrenkamp made such a proposal [4] for $Mn_2(CO)_6(C_5H_5)As(CH_3)_2$. We do not believe, however, that his case is as unambiguous as this one since that molecule is necessarily polar, to some extent.

Acknowledgements

We thank The Robert A. Welch Foundation (Grant No. A494) for generous financial support.

References

- 1 W.I. Bailey, Jr., F.A. Cotton, J.D. Jamerson and J.R. Kolb, J. Organometal. Chem., 121 (1976) C23.
- 2 (a) F.A. Cotton and J.M. Troup, J. Amer. Chem. Soc., 96 (1974) 1233; (b) F.A. Cotton, Prog. Inorg. Chem., 21 (1976) 1.
- 3 M.H. Chisholm, L.A. Rankel, W.I. Bailey, Jr., F.A. Cotton and C.A. Murillo, J. Amer. Chem. Soc., 99 (1977) 1261.
- 4 H. Vahrenkamp, Ber., 107 (1974) 3867.

Erratum

J. Organometal. Chem., Vol. 120, No. 3 (November 9th, 1976)

page 381, the 9th line of the Summary should read:

a = 12.038(6) Å, b = 12.900(12) Å, c = 13.878(10) Å, $\alpha = 95.83(7)^{\circ}$, $\beta = 103.47^{\circ}$

page 384, the 6th line from the top should read:

with a unit cell of dimensions a = 12.038(6) Å, b = 12.900(12) Å, c = 13.878(10) Å

C56